Bioactive Saponins and Glycosides

Part 291)

Acylated Oleanane-Type Triterpene Saponins: Theasaponins A₆, A₇, and B₅ from the Seeds of *Camellia sinensis*

by Toshio Morikawa^a)^b), Hisashi Matsuda^a), Ning Li^a)^c), Xian Li^c), and Masayuki Yoshikawa^{*a})

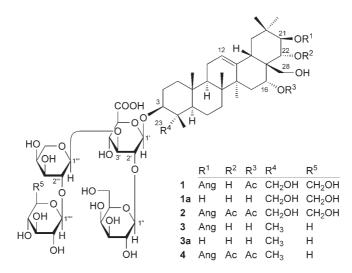
^a) Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan (phone: +81-75-595-4633; fax: +81-75-595-4768; e-mail: myoshika@mb.kyoto-phu.ac.jp)

^b) Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan

^c) Research Department of Natural Medicine, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

Three new acylated oleanane-type triterpene saponins, theasaponins $A_6(1)$, $A_7(2)$, and $B_5(3)$, were isolated from the saponin fraction of the seeds of the Japanese tea plant *Camellia sinensis* together with the known constituent foliatheasaponin III (4). The structures of the glycosides 1-3 were elucidated on the basis of spectroscopic, chemical, and physico-chemical evidence.

Introduction. – As part of our research on saponin constituents from the seeds of the Japanese tea plant, *Camellia sinensis* (L.) O. KUNTZE (*C. sinensis* L. var. *sinensis*), Theaceae, we have reported over the years the isolation and structure elucidation of theasaponins $A_1 - A_5$, B_1 , C_1 , $E_1 - E_{13}$, $F_1 - F_3$, H_1 , G_1 , and G_2 [2–6], as well as those of four flavanol oligoglycosides, theaflavanosides I–IV [7]. Among the isolates, theasaponins A_2 , E_1 , E_2 , and E_5 , as well as assamsaponins A, C, and D, were found to show protective effects on EtOH-induced gastric lesions in rats [3][4], hepatoprotective activity [7], and anti-hyperlipidemic activity [8].


Our continuing search now led to the isolation of three new acylated oleanane-type triterpene saponins, theasaponins $A_6(1)$, $A_7(2)$, and $B_5(3)$, which were obtained from the seeds of *C. sinensis*, together with a known saponin, foliatheasaponin III (4) [1], which was isolated for the first time from this plant. Herein, we report the structure elucidation of the new compounds.

Results and Discussion. – The saponin fraction of the MeOH extract of tea seeds, cultivated in Shizuoka Prefecture, Japan, as described previously [3], was purified by HPLC to afford compounds **1**, **2**, **3**, and **4** in yields of 60, 100, 60, and 330 ppm, respectively.

Compound **1**, obtained as colorless fine crystals from CHCl₃/MeOH (m.p. 226.1–227.4°) exhibited a positive optical rotation ($[\alpha]_D^{23} = +8.4$ (MeOH)). The IR spectrum

¹) For Part 28, see [1].

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

Ang = Angeloyl (= (Z)-2-methylbut-2-enoyl); Ac = acetyl

of **1** showed absorption bands at 1716 and 1651 cm⁻¹ ascribable to COOH and olefin moieties, and broad bands at 3431 and 1084 cm⁻¹, suggestive of an oligoglycoside structure. Positive- and negative-ion FAB-MS analysis of **1** showed the quasimolecular ions at m/z 1285 ($[M + Na]^+$) and 1261 ($[M - H]^-$), respectively, and positive HR-FAB-MS analysis revealed the molecular formula of **1** as C₆₀H₉₄O₂₈.

Alkaline hydrolysis of **1** with 10% aqueous KOH in $H_2O/1,4$ -dioxane 1:1 gave desacyl-theasaponin A (**1a**) [5], together with two organic acids, acetic acid (AcOH) and angelic acid (=(Z)-2-methylbut-2-enoic acid; AngOH), which were identified by HPLC analysis of the corresponding 4-nitrobenzyl derivatives [3–5]. Previously, we reported that hydrolysis of **1a** with 5% aqueous $H_2SO_4/1,4$ -dioxane 1:1 gave D-glucuronic acid (D-GlcA), D-galactose (D-Gal), L-arabinose (L-Ara), and D-glucose (D-Glc), as identified by GLC analysis of their trimethylsilyl thiazolidine derivatives [5].

The ¹H- and ¹³C-NMR spectra of **1** (*Tables 1* and 2, resp.), which were assigned by various NMR experiments (including DEPT, DQF, HMQC, and HMBC) showed signals assignable to six Me *singlets* at δ (H) 0.78, 0.85, 1.04, 1.12, 1.29, and 1.42 (Me(26), Me(25), Me(24), Me(29), Me(30), and Me(27)); two oxygenated CH₂ groups at δ (H) 3.65, 3.92 (2*d*, *J* = 10.7 Hz each, CH₂(28)), and at 3.74–3.80 and 4.35–4.42 (2*m*, CH₂(23)); four oxygenated CH groups at δ (H) 4.11–4.17 (*m*, H–C(3)), 4.78 and 5.97 (2*d*, *J* = 9.8 Hz each, H–C(22), H–C(21)), and 5.92 (br. *s*, H–C(16)); an olefinic H-atom at δ (H) 5.34 (br. *s*, H–C(12)); and four glycosyl moieties at δ (H) 5.08 (*d*, *J* = 6.9 Hz, H–C(1') of GlcA), 5.14 (*d*, *J* = 7.4 Hz, H–C(1''') of Glc), 5.79 (*d*, *J* = 7.6 Hz, H–C(1'') of Gal), and 5.84 (*d*, *J* = 5.8 Hz, H–C(1''') of Ara), together with an acetyl (Ac) group at δ (H) 2.51 (*s*) and an angeloyl (Ang) group at δ (H) 1.94 (*s*, Me), 2.02 (*d*, *J* = 7.3 Hz, Me), and 5.91 (*qd*-like, =CH).

The positions of the AcO and AngO groups in 1 were clarified on the basis of an HMBC experiment, which showed ${}^{1}H \rightarrow {}^{13}C$ long-range correlations between the

Atom	1	2	3 3.28 (<i>dd</i> , <i>J</i> = 7.4, 12.5)	
H-C(3)	4.11 - 4.17 (m)	4.12 - 4.16(m)		
H - C(12)	5.34 (br. s)	5.38 (br. s)	5.37 (br. s)	
H - C(16)	5.92 (br. s)	5.60 (br. s)	4.87 (br. s)	
H - C(18)	2.95 (<i>dd</i> -like)	3.01 (m)	2.93 (dd-like)	
H - C(21)	5.97(d, J = 9.8)	5.87 $(d, J = 10.4)$	6.49(d, J = 9.8)	
H-C(22)	4.78(d, J=9.8)	6.15 (d, J = 10.4)	4.81 (d, J = 9.8)	
CH ₂ (23)	3.74 - 3.80 (m),	3.75 - 3.79(m),	_	
	4.35 - 4.42 (m)	4.36 - 4.41(m)		
Me(23)	_			
Me(24)	1.04(s)	1.04(s)	1.13(s)	
Me(25)	0.85(s)	0.86(s)	0.81(s)	
Me(26)	0.78(s)	0.77(s)	0.86(s)	
Me(27)	1.42(s)	1.41(s)	1.85(s)	
CH ₂ (28)	3.65 (d, J = 10.7),	3.46 (d, J = 10.4),	3.69 (d, J = 10.4),	
	3.92 (d, J = 10.7)	3.59 (d, J = 10.4)	3.96 (d, J = 10.4)	
Me(29)	1.12(s)	1.06(s)	1.14 (s)	
Me(30)	1.29(s)	1.27(s)	1.33(s)	
H-C(1') of GlcA	5.08 (d, J = 6.9)	5.08(d, J = 6.9)	4.96 (d, J = 7.4)	
H-C(1'') of Gal	5.79(d, J = 7.6)	5.79(d, J = 7.9)		
H-C(1''') of Ara	5.84(d, J = 5.8)	5.84 (d, J = 5.8)	5.81 (d, J = 5.8)	
H-C(1''') of Glc	5.14(d, J = 7.4)	5.14(d, J = 6.4)	_	
H-C(1''') of Xyl	_	_	5.04 (d, J = 7.6)	
16-AcO	2.51(s)	2.51(s)	_	
H-C(3) of Ang	5.91 (qd-like)	5.99 (qd-like)	5.90 (qd-like)	
Me(4) of Ang	2.02(d, J = 7.3)	2.06 (d, J = 7.3) $2.06 (d, J = 7.0)$		
Me(5) of Ang	1.94 (s)	1.98(s)	1.99(s)	
22-AcO	-	2.04(s)	_ ``	

Table 1. ¹*H*-*NMR Data of* **1**-**3**. Recorded at 500 MHz and 40 °C in (D₅)pyridine; δ in ppm, *J* in Hz. Arbitrary atom numbering; for abbreviations, see text.

following pairs: H–C(16) and δ (C) 170.0 (C=O of Ac), H–C(21) and δ (C) 168.4 (C(1) of Ang), H–C(1') of GlcA and δ (C) 82.7 (C(3)), H–C(1'') of Gal and δ (C) 78.8 (C(2') of GlcA), H–C(1''') of Ara and δ (C) 84.7 (C(3') of GlcA), and H–C(1'''') of Glc and δ (C) 81.2 (C(2''') of Ara. Furthermore, comparison of the ¹³C-NMR data of **1** with those of **1a** revealed acylation shifts at the 16- and 21-positions of the desacyl-theasaponin A moiety [**1a**: δ (H) 5.00 (br. *s*, H–C(16)), 4.77 (*d*, *J* = 9.8 Hz, H–C(21)); δ (C) 67.8 (C(16)), 78.7 (C(21))] [5].

On the basis of the above evidence, the structure of the asaponin A₆ (1) was determined as 16-O-acetyl-21-O-angeloylthe asapogenol A 3-O- β -D-galactopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl-(1 \rightarrow 3)]- β -D-glucurono-pyranoside²).

Compound **2**, obtained as colorless fine crystals from CHCl₃/MeOH (m.p. 224.8–225.7°), exhibited a positive optical rotation ($[\alpha]_D^{24} = +7.4$ (MeOH)). The IR spectrum of **2** showed absorption bands at 3453, 1725, 1645, and 1076 cm⁻¹, ascribable to OH,

²) For systematic names, see Exper. Part.

Position	1	2	3	Position	1	2	3
1	38.7	38.7	38.8	22-AcO:			
2	25.6	25.6	26.6	1		170.4	
3	82.7	82.7	89.5	2		21.0	
4	43.5	43.5	39.6	β -D-GlcA:			
5	48.0	48.0	55.8	1′	104.3	104.3	105.7
6	18.0	18.0	18.4	2'	78.8	78.7	79.0
7	32.7	32.7	33.1	3′	84.7	84.8	83.9
8	40.0	40.0	40.0	4′	71.5	71.4	71.1
9	47.0	46.9	46.9	5'	77.3	77.3	77.3
10	36.6	36.6	36.7	6′	171.9	171.9	172.2
11	23.8	23.8	23.8	β -d-Gal:			
12	124.5	125.1	122.7	1″	103.2	103.5	103.5
13	141.9	141.0	143.5	2''	73.8	73.8	73.3
14	41.4	41.1	41.8	3''	75.1	75.1	75.1
15	30.9	30.9	34.4	4''	69.9	69.9	70.1
16	71.6	71.4	67.8	5''	76.6	76.6	76.4
17	47.6	46.9	47.8	6''	61.9	61.9	61.9
18	39.8	39.5	40.4	α -L-Ara:			
19	47.3	47.1	46.9	1′′′	101.7	101.8	101.7
20	36.0	35.9	36.1	2'''	81.2	81.1	82.1
21	80.5	78.3	81.6	3′′′	72.3	72.3	73.8
22	70.8	73.3	73.0	4′′′	67.5	67.5	68.3
23	64.7	64.6	28.0	5'''	64.7	64.7	65.9
24	13.6	13.6	16.8	β -D-Glc:			
25	16.2	16.1	15.8	1''''	105.9	105.9	
26	16.8	16.8	16.8	2''''	75.8	75.9	
27	27.1	27.0	27.3	3''''	78.4	78.5	
28	64.7	63.7	65.9	4''''	71.6	71.5	
29	30.0	29.4	29.9	5''''	78.4	78.5	
30	20.2	19.7	20.4	6''''	62.6	62.6	
16-AcO:				β -D-Xyl:			
1	170.0	169.8		1''''			106.8
2	22.3	22.0		2''''			75.7
21-AngO:				3''''			78.3
1	168.4	167.8	168.6	4''''			70.8
2	129.2	128.4	129.5	5''''			67.5
3	136.8	138.1	136.0	-			
4	16.0	16.0	15.9				
5	21.1	20.9	21.0				

Table 2. ¹³*C*-*NMR Data of* **1**–**3**. Recorded at 125 MHz and 40 °C in (D₅)pyridine; δ in ppm. Arbitrary atom numbering; for abbreviations, see text.

COOH, olefin, and ether functions. The molecular formula $C_{62}H_{96}O_{29}$ was determined by positive- and negative-ion FAB-MS (m/z 1327 ($[M + Na]^+$) and 1303 ($[M - H]^-$), resp.), and by HR-FAB-MS (positive-ion mode). The fragmentation patterns in the negative-ion FAB mass spectrum of **2** indicated the loss of a terminal mono-hexose (m/z 1141 ($[M - C_6H_{11}O_5]^-$) and a disaccharide part (pentose and hexose units; m/z1009 ($[M - C_{11}H_{19}O_9]^-$). Treatment of **2** with 10% aqueous KOH in $H_2O/1,4$ -dioxane 1:1 liberated **1a** and both AcOH and AngOH, as identified by HPLC analysis of their 4-nitrobenzyl derivatives.

The ¹H- and ¹³C-NMR spectra of **2** (*Tables 1* and 2, resp.) revealed two AcO groups at $\delta(H)$ 2.04, 2.51 (2s) and an AngO group at $\delta(H)$ 1.98 (s, Me), 2.06 (d, J = 7.3 Hz, Me), and 5.99 (*qd*-like, =CH). Their positions were clarified by an HMBC experiment. Thus, long-range correlations were observed between H–C(16) and $\delta(C)$ 169.8 (C=O of Ac), between H–C(21) and $\delta(C)$ 167.8 (C(1) of Ang), and between H–C(22) and $\delta(C)$ 170.4 (C=O of Ac). Furthermore, comparison of the ¹³C-NMR data of **2** with those of **1** revealed an acetylation shift near the 22-position of the aglycone. Consequently, the structure of theasaponin A₇ (**2**) was determined as 16,22-di-*O*acetyl-21-*O*-angeloyltheasapogenol A 3-*O*- β -D-galactopyranosyl-(1 \rightarrow 2)-(β -D-glucopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl-(1 \rightarrow 3)]- β -D-glucuronopyranoside.

Compound **3**, obtained as colorless fine crystals from CHCl₃/MeOH (m.p. 233.1–233.9°), exhibited a positive optical rotation ($[\alpha]_D^{23} = +4.0$ (MeOH)). Analysis of the positive- and negative-ion FAB mass spectra of **3** showed quasimolecular ion peaks at m/z 1197 ($[M + Na]^+$) and 1173 ($[M - H]^-$), respectively. HR-FAB-MS Analysis (positive-ion mode) revealed the molecular formula to be $C_{57}H_{90}O_{25}$.

Alkaline hydrolysis of **3** with 10% aqueous KOH in $H_2O/1,4$ -dioxane 1:1 liberated desacyl-assamsaponin E (**3a**) [9] and AngOH, which was identified by HPLC analysis of its 4-nitrobenzyl derivative. Previously, we reported that hydrolysis of **3a** with 5% aqueous $H_2SO_4/1,4$ -dioxane 1:1 gave D-GlcA, D-Gal, L-Ara, and D-xylose (D-Xyl), which were identified by GLC analysis of their trimethylsilyl thiazolidine derivatives [9].

The ¹H- and ¹³C-NMR Spectra of **3** (*Tables 1* and 2, resp.) indicated the presence of a theasapogenol-B (barringtogenol-C) moiety, with seven Me *singlets* at δ (H) 0.81, 0.86, 1.13, 1.14, 1.29, 1.33, and 1.85 (Me(25), Me(26), Me(24), Me(29), Me(23), Me(30), and Me(27)), a CH₂ moiety and four oxygenated CH groups [δ (H) 3.28 (*dd*, J = 7.4, 12.5 Hz, H–C(3)); 3.69, 3.96 (2*d*, J = 10.4 Hz each, CH₂(28)); 4.81, 6.49 (2*d*, J = 9.8 Hz, H–C(22), H–C(21)); 4.87 (br. *s*, H–C(16))], an olefinic H-atom at δ (H) 5.37 (br. *s*, H–C(12)), and four glycosyl moieties at δ (H) 4.96 (*d*, J = 7.4 Hz, H–C(1') of GlcA), 5.04 (*d*, J = 7.6 Hz, H–C(1''') of Xyl), 5.78 (*d*, J = 7.3 Hz, H–C(1'') of Gal), and 5.81 (*d*, J = 5.8 Hz, H–C(1''') of Ara), together with an Ang group at δ (H) 1.99 (*s*, Me), 2.06 (*d*, J = 7.0 Hz, Me), and 5.90 (*qd*-like, =CH). In the HMBC spectrum of **3**, a long-range ¹H \rightarrow ¹³C correlation was observed between H–C(21) and δ (C) 168.6 (C(1) of Ang).

From the above data, the structure of the asaponin B₅ (**3**) was determined as 21-*O*-angeloylthe asapogenol B 3-*O*- β -D-galactopyranosyl- $(1 \rightarrow 2)$ -[β -D-xylopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl- $(1 \rightarrow 3)$]- β -D-glucuronopyranoside.

Experimental Part

General. Column chromatography (CC): silica gel BW-200 (150-300 mesh; Fuji Silysia Chemical, Ltd., Japan). HPLC: Shimadzu RID-6A refractive-index and SPD-10A UV/VIS detectors, LC-6AD pump, CTO-10A oven, and Chromatopac C-R6A column. M.p: Yanagimoto MP-500D micro-melting-point apparatus; uncorrected. Optical rotations: Horiba SEPA-300 digital polarimeter (l = 5 cm). IR

Spectra: *Shimadzu FT-IR-8100* spectrometer; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *Jeol JNM-LA500* spectrometer; at 500/125 MHz, resp., δ in ppm rel. to Me₄Si, *J* in Hz. FAB- and HR-FAB-MS: *Jeol JMS-SX 102A* mass spectrometer; in *m/z*.

Plant material. The seeds of *Camellia sinensis* were cultivated in 2004 at Shizuoka Prefecture, Japan, as described previously [2].

Extraction and Isolation. Compounds 1-4 were isolated as described below from three previously reported [2] fractions, *Fr.* 5 (2.20 g), *Fr.* 6 (0.96 g), and *Fr.* 8 (0.97 g), originally obtained from the saponin fraction (eluted with MeOH) of the seeds of *C. sinensis* (1.0 kg).

Fr. 5 (2.20 g) was separated by HPLC [*YMC-Pack ODS-A*, 250 × 20 mm i.d.; MeCN/1% aq. AcOH 40:60; 9.0 ml/min] to afford the following twelve subfractions: *Fr.* 5.1 [13 mg (50 ppm), theasaponin A₄; $t_{\rm R}$ 15.5 min], *Fr.* 5.2 [53 mg (210 ppm), theasaponin A₁; $t_{\rm R}$ 21.9 min], *Fr.* 5.3 [23 mg (90 ppm), theasaponin F₁; $t_{\rm R}$ 25.3 min], *Fr.* 5.4 [14 mg (60 ppm), theasaponin A₆ (1); $t_{\rm R}$ 27.0 min], *Fr.* 5.5 (37 mg), *Fr.* 5.6 (164 mg), *Fr.* 5.7 (100 mg), *Fr.* 5.8 (328 mg), *Fr.* 5.9 (148 mg (59 ppm), theasaponin A₃; $t_{\rm R}$ 42.2 min]; *Fr.* 5.10 (200 mg), *Fr.* 5.11 (645 mg), and *Fr.* 5.12 (85 mg). Then, *Fr.* 5.8 (328 mg) was subjected to HPLC [*Develosil C30-UG-5*, 250 × 20 mm i.d.; MeCN/MeOH/1% aq. AcOH 35:16:49; 9.0 ml/min] to afford theasaponin A₇ [2; 26 mg (100 ppm); $t_{\rm R}$ 48.2 min], together with camelliasaponin C₁ [10 mg (40 ppm); $t_{\rm R}$ 41.9 min], theasaponin C₁ [77 mg (310 ppm); $t_{\rm R}$ 44.7 min], and theosaponin F₂ [54 mg (210 ppm); $t_{\rm R}$ 46.5 min].

Fr. 6 (960 mg) was subjected to HPLC [*YMC-pack ODS-A*, 250 × 20 mm i.d.; MeCN/1% aq. AcOH 43:57; 9.0 ml/min] to give the following nine fractions: *Fr.* 6.1 [16 mg (60 ppm), theasaponin B₅ (**3**); $t_{\rm R}$ 20.7 min], *Fr.* 6.2 [56 mg (220 ppm), assamsaponin I; $t_{\rm R}$ 25.1 min], *Fr.* 6.3 [323 mg (1300 ppm), assamsaponin C; $t_{\rm R}$ 27.3 min], *Fr.* 6.4 (65 mg), *Fr.* 6.5 [39 mg (160 ppm), floratheasaponin A; $t_{\rm R}$ 29.3 min], *Fr.* 6.6 (15 mg), *Fr.* 6.7 (75 mg), *Fr.* 6.8 (20 mg), and *Fr.* 6.9 [126 mg (500 ppm), theasaponin E₅; $t_{\rm R}$ 37.1 min].

Fr. 8 (0.97 g) was subjected to HPLC [*YMC-Pack ODS-A*, 250 × 20 mm i.d., MeCN/1% aq. AcOH 43:57; 9.0 ml/min] to afford five fractions: *Fr.* 8.1 [323 mg (1300 ppm), theasaponin A₂; t_R 28.0 min], *Fr.* 8.2 [136 mg (540 ppm), theasaponin F₃; t_R 31.8 min], *Fr.* 8.3 (46 mg), *Fr.* 8.4 (84 mg), and *Fr.* 8.5 [82 mg (330 ppm), foliatheasaponin III (4); t_R 39.3 min].

Theasaponin A₆ (=(3β,16α,21β,22α)-16-Acetoxy-22,23,28-trihydroxy-21-{[(2Z)-2-methylbut-2-enoyl]oxy}olean-12-en-3-yl β-D-Galactopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→3)]-β-D-glucopyranosiduronic Acid; **1**). Colorless, fine crystals. M.p. 226.1–227.4° (CHCl₃/MeOH). [a]²⁵_D = + 8.4 (*c* = 0.55, MeOH). IR (KBr): 3431, 1716, 1651, 1084. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. FAB-MS (pos.): 1285 ([*M*+Na]⁺). FAB-MS (neg.): 1261 ([*M*−H]⁻), 1099 ([*M*−C₆H₁₁O₅]⁻), 967 ([*M*−C₁₁H₁₉O₉]⁻). HR-FAB-MS (pos.): 1285.5839 ([*M*+Na]⁺, C₆₀H₉₄NaO⁺₂₈; calc. 1285.5829).

Theasaponin A_7 (= (3 β ,16 α ,21 β ,22 α)-16,22-Diacetoxy-23,28-dihydroxy-21-{[(2Z)-2-methylbut-2enoyl]oxy]olean-12-en-3-yl β -D-Galactopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosiduronic Acid; **2**). Colorless, fine crystals. M.p. 224.8–225.7° (CHCl₃/ MeOH). [a] $_{24}^{24}$ = +7.4 (c = 1.01, MeOH). IR (KBr): 3453, 1725, 1645, 1076. ¹H- and ¹³C-NMR: see Tables 1 and 2, resp. FAB-MS (pos.): 1327 ([M + Na]⁺). FAB-MS (neg.): 1303 ([M – H]⁻), 1141 ([M – C₆H₁₁O₅]⁻), 1009 ([M – C₁₁H₁₉O₉]⁻). HR-FAB-MS (pos.): 1327.5929 ([M + Na]⁺, C₆₂H₉₆NaO₂₉; calc. 1327.5935).

Theasaponin B_5 (=(3 β ,16 α ,21 β ,22 α)-16,22,28-Trihydroxy-21-{[(2Z)-2-methylbut-2-enoyl]oxy}olean-12-en-3-yl β -D-Galactopyranosyl-(1 \rightarrow 2)-[β -D-xylopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosiduronic Acid; **3**). Colorless, fine crystals. M.p. 233.1–233.9° (CHCl₃/MeOH). [α]_D²³ = +4.0 (c = 0.88, MeOH). IR (KBr): 3453, 1716, 1645, 1084. ¹H- and ¹³C-NMR: see Tables 1 and 2, resp. FAB-MS (pos.): 1197 ([M+Na]⁺). FAB-MS (neg.): 1173 ([M-H]⁻), 1011 ([M-C₆H₁₁O₅]⁻). HR-FAB-MS (pos.): 1197.5657 ([M+Na]⁺, C₅₇H₉₀NaO[±]₂₅; calc. 1197.5669).

Alkaline Hydrolysis of 1-3. A soln. of the appropriate theasaponin (10 mg) in 50% aq. 1,4-dioxane (1 ml) was treated with 10% aq. KOH (1 ml), and the mixture was stirred at 37° for 1 h. An aliquot (0.1 ml) of the reaction mixture was concentrated under reduced pressure, and the resulting residue was dissolved in 1,2-dichloroethane (2 ml). This soln. was treated with '*para*-nitrobenzyl-*N*,*N*'-diisopropyl-isourea' (10 mg) and stirred at 80° for 1 h. The reaction mixture was then subjected to HPLC analysis

[*YMC-Pack ODS-A*, 250 × 4.6 mm i.d.; MeOH/H₂O 70:30; 0.9 ml/min, UV detection at 254 nm], and the *para*-nitrobenzyl esters of AcOH (t_R 6.3 min) from **1** and **2**, as well as angelic acid (t_R 16.0 min) from **1**-**3** were detected. The rest of each reaction mixture was neutralized over *Dowex HCR W2* resin (H⁺ form), which was then removed by filtration. The filtrate was concentrated under reduced pressure, and the resulting product was subjected to CC (2 g SiO₂; CHCl₃/MeOH/H₂O 6:4:1) to give desacyl-theasaponin A [5] (**1a**; 6 mg each from **1** and **2**) or desacyl-assamsaponin E [9] (**3a**; 6 mg, from **3**).

M. Y. and *H. M.* were supported by the 21st COE Program, Academic Frontier Project, and a Grantin Aid for Scientific Research from the *Ministry of Education, Culture, Sports, Science and Technology of Japan* (MEXT). *T. M.* was supported by the *High-tech Research Center Project* (2007) and a Grant-in Aid for Scientific Research from MEXT.

REFERENCES

- T. Morikawa, S. Nakamura, Y. Kato, O. Muraoka, H. Matsuda, M. Yoshikawa, *Chem. Pharm. Bull.* 2007, 55, 293.
- [2] I. Kitagawa, K. Hori, T. Motozawa, T. Murakami, M. Yoshikawa, Chem. Pharm. Bull. 1998, 46, 1901.
- [3] M. Yoshikawa, T. Morikawa, N. Li, A. Nagatomo, X. Li, H. Matsuda, *Chem. Pharm. Bull.* 2005, 53, 1559.
- [4] T. Morikawa, N. Li, A. Nagatomo, H. Matsuda, X. Li, M. Yoshikawa, J. Nat. Prod. 2006, 69, 185.
- [5] M. Yoshikawa, T. Morikawa, S. Nakamura, N. Li, X. Li, H. Matsuda, Chem. Pharm. Bull. 2007, 55, 57.
- [6] T. Morikawa, H. Matsuda, N. Li, S. Nakamura, X. Li, M. Yoshikawa, Heterocycles 2006, 68, 1139.
- [7] N. Li, T. Morikawa, H. Matsuda, K. Ninomiya, X. Li, M. Yoshikawa, Heterocycles 2007, 71, 1193.
- [8] M. Yoshikawa, T. Morikawa, K. Yamamoto, Y. Kato, A. Nagatomo, H. Matsuda, J. Nat. Prod. 2005, 68, 1360.
- [9] T. Murakami, J. Nakamura, H. Matsuda, M. Yoshikawa, Chem. Pharm. Bull. 1999, 47, 1759.

Received July 26, 2007